Linear independence of values of polylogarithms
From MaRDI portal
Publication:558149
DOI10.5802/jtnb.413zbMath1079.11038OpenAlexW2323085865MaRDI QIDQ558149
Publication date: 30 June 2005
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_2003__15_2_551_0
Gamma, beta and polygamma functions (33B15) Other Dirichlet series and zeta functions (11M41) Irrationality; linear independence over a field (11J72)
Related Items
Linear Forms in Polylogarithms ⋮ Linear independence criteria for generalized polylogarithms with distinct shifts ⋮ Unnamed Item ⋮ Linear independence of values of \(G\)-functions ⋮ A note on linear independence of polylogarithms over the rationals ⋮ Can polylogarithms at algebraic points be linearly independent? ⋮ On the linear independence of values of \(G\)-functions ⋮ Linear independence of values of \(G\)-functions. II: Outside the disk of convergence ⋮ SHIDLOVSKY’S MULTIPLICITY ESTIMATE AND IRRATIONALITY OF ZETA VALUES
Cites Work
- Unnamed Item
- On the linear independence of the values of polylogarithmic functions
- On the linear independence of numbers
- Diophantine properties of numbers related to Catalan's constant
- ON IRRATIONALITY OF THE VALUES OF THE FUNCTIONS $ F(x,s)$
- La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs
- Irrationality of infinitely many values of the zeta function at odd integers.