Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants
From MaRDI portal
Publication:5584139
DOI10.24033/bsmf.1687zbMath0189.40502OpenAlexW2525107718MaRDI QIDQ5584139
Publication date: 1969
Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=BSMF_1969__97__329_0
Related Items
Applications of complex Clifford analysis to the study of solutions to generalized Dirac and Klein-Gordon equations with holomorphic potentials, Holomorphic solutions of soliton equations, Problèmes de Cauchy globaux, The existence and the continuation of holomorphic solutions for convolution equations in tube domains, Non-local pseudo-differential operators, Open problems in Clifford analysis and its applications, \(C^2\) extensions of analytic functions defined in the complex plane, Existence and continuation of holomorphic solutions of differential equations of infinite order, On the analytic continuation of holomorphic solutions of partial differential equations, Application of the fundamental principle to complex Cauchy problem, Application of functional calculus to complex Cauchy problems, Extension of solutions of convolution equations in spaces of holomorphic functions with polynomial growth in convex domains, Criterion of analytic continuability of functions in principal invariant subspaces on convex domains in $\mathbb{C}^{n}$, Continuation of functions from principal invariant subspaces, Local analytic continuation of holomorphic solutions of partial differential equations, The Cauchy problem and Hadamard's example, Extension and lacunas of solutions of linear partial differential equations, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles. (Existence and prolongation of the holomorphic solutions of partial differential equations), Analyse microlocale sur les variétés de Cauchy-Riemann et problème du prolongement des solutions holomorphes des équations aux dérivées partielles, Analytic functionals and Cauchy problems.
Cites Work