Réduction de la variance dans les sondages en présence d'information auxiliarie: Une approache non paramétrique par splines de régression
From MaRDI portal
Publication:5696342
DOI10.1002/cjs.5550330202zbMath1071.62006OpenAlexW1973234865MaRDI QIDQ5696342
Publication date: 18 October 2005
Published in: Canadian Journal of Statistics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/cjs.5550330202
stratificationB-splinesmodel-assisted estimatorgeneralized regression estimatorsanticipated variance
Nonparametric regression and quantile regression (62G08) Asymptotic properties of nonparametric inference (62G20) Sampling theory, sample surveys (62D05)
Related Items
Nonparametric regression estimators in dual frame surveys, Some models for estimation of total of a study variable having many zero values, Model-assisted estimation in high-dimensional settings for survey data, Model-Assisted Estimation Through Random Forests in Finite Population Sampling, On kernel nonparametric regression designed for complex survey data, Difference-based variance estimator for nonparametric regression in complex surveys, Nonparametric regression estimators in complex surveys, Survey design asymptotics for the model-assisted penalised spline regression estimator, B-Spline Estimation in a Survey Sampling Framework
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Estimators of the finite population distribution function using nonparametric regression
- Regression function estimation from dependent observations
- The weighted residual technique for estimating the variance of the general regression estimator of the finite population total
- Estimation in Survey Sampling: Robustness and Optimality
- Calibration Estimators in Survey Sampling
- Design-adaptive Nonparametric Regression
- Some results on generalized difference estimation and generalized regression estimation for finite populations
- Bias Robust Estimation in Finite Populations Using Nonparametric Calibration
- Survey Design Under the Regression Superpopulation Model
- Admissibility and Bayes Estimation in Sampling Finite Populations. I
- A Generalization of Sampling Without Replacement From a Finite Universe