Double Gegenbauer expansion of |s–t|α
DOI10.1080/10652469.2019.1585433zbMath1412.42066arXiv1902.08064OpenAlexW3104744917MaRDI QIDQ5742556
Toshiyuki Kobayashi, Alex Leontiev
Publication date: 15 May 2019
Published in: Integral Transforms and Special Functions (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1902.08064
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis (42C05) Semisimple Lie groups and their representations (22E46) Differential geometry of symmetric spaces (53C35) Classical hypergeometric functions, ({}_2F_1) (33C05)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Generalized Bernstein-Reznikov integrals
- The \({\mathfrak{sl}}_3\) Selberg integral
- Selberg-type integrals associated with \(\mathfrak{sl}_3\)
- On a generalization of the generating function for Gegenbauer polynomials
- Symmetry breaking for representations of rank one orthogonal groups
- The Schrödinger model for the minimal representation of the indefinite orthogonal group 𝑂(𝑝,𝑞)
- Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut (−1, 1)
- The importance of the Selberg integral
This page was built for publication: Double Gegenbauer expansion of |s–t|α