On the exponential Diophantine equation (18m2 + 1)x + (7m2 -1)y = (5m)z
From MaRDI portal
Publication:5742741
DOI10.3906/mat-1801-76zbMath1424.11079OpenAlexW2883046267WikidataQ115483987 ScholiaQ115483987MaRDI QIDQ5742741
Publication date: 8 May 2019
Published in: TURKISH JOURNAL OF MATHEMATICS (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3906/mat-1801-76
Related Items (3)
Unnamed Item ⋮ A parametric family of ternary purely exponential Diophantine equation $A^x+B^y=C^z$ ⋮ A note on the exponential Diophantine equation \((rlm^2-1)^x+(r(r-l)m^2+1)^y=(rm)^z\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On Jeśmanowicz' conjecture concerning primitive Pythagorean triples
- On Jeśmanowicz' conjecture concerning primitive Pythagorean triples. II
- Exceptional cases of Terai's conjecture on Diophantine equations
- The diophantine equation \(a^ x+b^ y=c^ z\)
- On the exponential Diophantine equation \((am^2 + 1)^x + (bm^2 - 1)^y= (cm)^z\) with \(c \mid m\)
- On the exponential Diophantine equation \((3pm^2-1)^x + ( p( p - 3)m^2 + 1)^y = (pm)^z\)
- Zur Approximation algebraischer Zahlen. I: Über den grössten Primteiler binärer Formen
- Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples
- On Some Exponential Equations of S. S. Pillai
- Linear forms in two logarithms and interpolation determinants II
- Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations
- A note on the Diophantine equation $a^x + b^y = c^z$
- Linear forms in p-adic logarithms and the Diophantine equation formula here
- JEŚMANOWICZ’ CONJECTURE ON PYTHAGOREAN TRIPLES
This page was built for publication: On the exponential Diophantine equation (18m2 + 1)x + (7m2 -1)y = (5m)z