On the Diophantine equation (( c + 1) m 2 + 1) x + ( cm 2
From MaRDI portal
Publication:5742835
DOI10.3906/mat-1803-14zbMath1424.11084OpenAlexW2893585054MaRDI QIDQ5742835
Elif Kizildere, Takafumi Miyazaki, Gökhan Soydan
Publication date: 8 May 2019
Published in: TURKISH JOURNAL OF MATHEMATICS (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3906/mat-1803-14
Related Items (4)
A parametric family of ternary purely exponential Diophantine equation $A^x+B^y=C^z$ ⋮ On the exponential Diophantine equation \((m^2+m+1)^x+m^y=(m+1)^z\) ⋮ On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y}=(pn)^{z}$ ⋮ A note on the exponential Diophantine equation \((rlm^2-1)^x+(r(r-l)m^2+1)^y=(rm)^z\)
Uses Software
Cites Work
- Exceptional cases of Terai's conjecture on Diophantine equations
- Sur une classe d'équations exponentielles
- The diophantine equation \(a^ x+b^ y=c^ z\)
- On the exponential Diophantine equation \((am^2 + 1)^x + (bm^2 - 1)^y= (cm)^z\) with \(c \mid m\)
- On the exponential Diophantine equation \((3pm^2-1)^x + ( p( p - 3)m^2 + 1)^y = (pm)^z\)
- The exponential Diophantine equation \(\left(4 m^2 + 1\right)^x + \left(5 m^2 - 1\right)^y = (3 m)^z\)
- Zur Approximation algebraischer Zahlen. I: Über den grössten Primteiler binärer Formen
- The complete solution of the Diophantine equation \((4m^2 + 1)^x + (5m^2 - 1)^y = (3m)^z\)
- Linear forms in two logarithms and interpolation determinants II
- A conjecture concerning the exponential diophantine equation ax+by=cz
- Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations
- A note on the Diophantine equation $a^x + b^y = c^z$
- TERAI'S CONJECTURE ON EXPONENTIAL DIOPHANTINE EQUATIONS
- A note on the exponential diophantine equation $(am^2+1)^x+(bm^2-1)^y=(cm)^z$
- ON THE EXPONENTIAL DIOPHANTINE EQUATION
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On the Diophantine equation (( c + 1) m 2 + 1) x + ( cm 2