Zyklische unverzweigte Erweiterungskörper vom Primzahlgradep über einem algebraischen Funktionenkörper der Charakteristikp
From MaRDI portal
Publication:5761497
DOI10.1007/BF01707628zbMath0013.34102WikidataQ105601755 ScholiaQ105601755MaRDI QIDQ5761497
Publication date: 1936
Published in: Monatshefte für Mathematik und Physik (Search for Journal in Brave)
Related Items (25)
Unnamed Item ⋮ The trace of the cartier operator and character sums ⋮ Lower bounds on the F-pure threshold and extremal singularities ⋮ A Generalization of a Lemma of Sullivan ⋮ On the poles of regular differentials of singular curves ⋮ A study of Hasse-Witt matrices by local methods ⋮ A note on Hasse-Witt matrices of algebraic curves of positive characteristic $p$ ⋮ Hasse-Witt matrices of Fermat curves ⋮ Hasse-Witt matrices for the Fermat curves of prime degree ⋮ An elementary abelian \(p\)-cover of the Hermitian curve with many automorphisms ⋮ The Hasse-Witt invariant in some towers of function fields over finite fields ⋮ Algebraic solutions of differential equations (p-curvature and the Hodge filtration) ⋮ Point counting on K3 surfaces and an application concerning real and complex multiplication ⋮ On the covariant Dieudonne-module of an abelian variety of dimension two over W(k) ⋮ On the Hasse–Witt Invariants of Modular Curves ⋮ Frobenius actions on the de Rham cohomology of Drinfeld modules ⋮ The p-rank of Artin-Schreier curves ⋮ \(p\)-torsion in the class group of curves with too many automorphisms ⋮ Elementary abelian \(p\)-extensions of algebraic function fields ⋮ Rational points of Abelian varieties with values in towers of number fields ⋮ Subvarieties of moduli spaces ⋮ The Hasse-Witt matrix of a formal group ⋮ On class numbers of algebraic function fields defined by \(y^ 2=x^ 5+ax\) over \(GF(p)\) ⋮ On the rank of Hasse-Witt matrix ⋮ Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants
Cites Work
This page was built for publication: Zyklische unverzweigte Erweiterungskörper vom Primzahlgradep über einem algebraischen Funktionenkörper der Charakteristikp