The divisor classes of the surface \(z^ p=G(x,y)\), a programmable problem
From MaRDI portal
Publication:581472
DOI10.1016/0021-8693(86)90108-0zbMath0627.14001OpenAlexW2087925141MaRDI QIDQ581472
David Joyce, Jeffrey Lang, Piotre Blass
Publication date: 1986
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(86)90108-0
Divisors, linear systems, invertible sheaves (14C20) Software, source code, etc. for problems pertaining to algebraic geometry (14-04) Special surfaces (14J25)
Related Items
Locally factorial generic Zariski surfaces are factorial, A new algorithm for computing class groups of Zariski surfaces, Zariski surfaces, class groups and linearized systems, Purely inseparable extensions of unique factorization domains, Linearized systems and a generalized Cayley–Hamilton theorem
Cites Work
- The divisor class group of the surface \(\exp(p^ n\cdot \log Z)=G(X,Y)\) over fields of characteristic \(p>0\)
- An example related to the affine theorem of Castelnuovo
- Classes de diviseurs et dérivées logarithmiques
- Lectures on unique factorization domains. Notes by M. Pavman Murthy
- [https://portal.mardi4nfdi.de/wiki/Publication:3309993 The Divisor Classes of the Hypersurface z p m = G(x 1 , � ,x n ) in Characteristic p > 0]
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item