Un point fixe commun pour des difféomorphismes commutants de \(S^ 2\). (A common fixed point for commutating diffeomorphisms of \(S^ 2\).)
From MaRDI portal
Publication:581890
DOI10.2307/1971485zbMath0689.57019OpenAlexW2460818671MaRDI QIDQ581890
Publication date: 1989
Published in: Annals of Mathematics. Second Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2307/1971485
Foliations in differential topology; geometric theory (57R30) Differential topological aspects of diffeomorphisms (57R50) Dynamical systems and ergodic theory (37-XX)
Related Items
Fixed points of discrete nilpotent group actions on \(S^2\) ⋮ Champs de vecteurs analytiques commutants, en dimension 3 ou 4: existence de zeros communs ⋮ Existence of common zeros for commuting vector fields on three manifolds ⋮ [https://portal.mardi4nfdi.de/wiki/Publication:4288848 Sur les groupes engendr�s par des diff�omorphismes proches de l'identit�] ⋮ Localisation of common fixed points for commuting diffeomorphisms of the plane ⋮ Rigidity for \(C^1\) actions on the interval arising from hyperbolicity. I: Solvable groups ⋮ Centralizers of derived-from-Anosov systems on : rigidity versus triviality ⋮ Finite orbits for nilpotent actions on the torus ⋮ Global fixed points for nilpotent actions on the torus ⋮ Rigidity of trivial actions of abelian-by-cyclic groups ⋮ Fixed points of abelian actions on S2 ⋮ Fixed points of nilpotent actions on ⋮ The Relevance of a Metric Condition on a Pair of Operators in Common Fixed Point Theory ⋮ Global fixed points for centralizers and Morita's theorem ⋮ Any Baumslag–Solitar action on surfaces with a pseudo-Anosov element has a finite orbit ⋮ Des points fixes communs pour des difféomorphismes de qui commutent et préservent une mesure de probabilité ⋮ Fixed points for nilpotent actions on the plane and the Cartwright-Littlewood theorem