The optimal \(L_ 1\) problem for generalized polynomial monosplines and a related problem
From MaRDI portal
Publication:582496
DOI10.1016/0021-9045(89)90151-2zbMath0691.41010OpenAlexW2006017823MaRDI QIDQ582496
Henry L. Loeb, Richard B. Barrar
Publication date: 1989
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9045(89)90151-2
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Generalized Gaussian quadrature formulas
- The fundamental theorem of algebra for monosplines with multiple nodes
- Optimale Quadraturformeln und Perfektsplines
- Oscillating Tchebycheff systems
- The fundamental theorem of algebra and the interpolating envelope for totally positive perfect splines
- Best \(L^1\) approximation by weak Chebyshev systems and the uniqueness of interpolating perfect splines
- \(L_1\)-approximation verallgemeinerter konvexer Funktionen durch Splines mit freien Knoten
- Generalized polynomials of minimal norm
- Fundamental Theorem of Algebra for Monosplines and Related Results
- Die Eindeutigkeit \(L_2\)-optimaler polynomialer Monosplines
This page was built for publication: The optimal \(L_ 1\) problem for generalized polynomial monosplines and a related problem