Structure of the Verma module \(M(-\rho)\) over Euclidean Lie algebras
From MaRDI portal
Publication:584375
DOI10.1016/0021-8693(89)90138-5zbMath0693.17013OpenAlexW1999671010WikidataQ115366172 ScholiaQ115366172MaRDI QIDQ584375
Publication date: 1989
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(89)90138-5
multiplicityVerma moduleJantzen filtrationhighest weight vectorEuclidean Lie algebraimaginary root vectorssymmetrizable Kac-Moody Lie algebra
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67)
Related Items (5)
REALIZATION OF ${\widehat{\mathfrak{sl}}_2({\mathbb C})}$ AT THE CRITICAL LEVEL ⋮ A note on some structure theorems of modules in category 0 ⋮ On the restricted Verma modules at the critical level ⋮ Unnamed Item ⋮ The modular Weyl-Kac character formula
Cites Work
- Unnamed Item
- Unnamed Item
- Moduln mit einem höchsten Gewicht
- Structure of representations with highest weight of infinite-dimensional Lie algebras
- Realization of the basic representations of the Euclidean Lie algebras
- Structure of some categories of representations of infinite-dimensional Lie algebras
- On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra
- A new class of Lie algebras
This page was built for publication: Structure of the Verma module \(M(-\rho)\) over Euclidean Lie algebras