Langlands-Shahidi $L$-functions for $GSpin$ groups and the generic Arthur packet conjecture
From MaRDI portal
Publication:5853483
DOI10.1090/tran/8258zbMath1469.11143arXiv1507.07156OpenAlexW3047180621WikidataQ113822473 ScholiaQ113822473MaRDI QIDQ5853483
Publication date: 10 March 2021
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1507.07156
Representations of Lie and linear algebraic groups over local fields (22E50) Representation-theoretic methods; automorphic representations over local and global fields (11F70)
Related Items
Discrete series of odd general spin groups, Endoscopic transfer and automorphic L-functions: The case of the general spin group and the twisted symmetric and exterior square L-functions, On the generic local Langlands correspondence for ๐บ๐๐๐๐ groups, The generic dual of \(p\)-adic split \(\mathrm{SO}_{2n}\) and local Langlands parameters, Strongly positive representations of \(\mathrm{GSpin}_{2n+1}\) and the Jacquet module method (with an appendix ``Strongly positive representations in an exceptional rank-one reducibility case by Ivan Matiฤ)
Cites Work
- The generic dual of \(p\)-adic split \(\mathrm{SO}_{2n}\) and local Langlands parameters
- Arthur packets and the Ramanujan conjecture
- Strongly positive representations of metaplectic groups
- On twisted exterior and symmetric square \(\gamma\)-factors
- Strongly positive representations of even GSpin groups
- On the standard modules conjecture
- On the Ramanujan conjecture and finiteness of poles for certain \(L\)-functions
- Local coefficients as Artin factors for real groups
- Special representations of reductive p-adic groups are not integrable
- The Langlands quotient theorem for p-adic groups
- Characterization of the local Langlands conjecture by \(\varepsilon\)-factors for pairs
- A proof of Langlands' conjecture on Plancherel measures; complementary series for \(p\)-adic groups
- Functoriality for the classical groups
- A simple proof of Langlands conjectures for \(\text{GL}_n\) on a \(p\)-adic field
- Local Langlands correspondence for \(\mathrm{GL}_n\) and the exterior and symmetric square \(\varepsilon\)-factors
- Generic transfer for general spin groups
- Strongly positive representations of \(\mathrm{GSpin}_{2n+1}\) and the Jacquet module method (with an appendix ``Strongly positive representations in an exceptional rank-one reducibility case by Ivan Matiฤ)
- The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151)
- On the tempered $L$-functions conjecture
- On the generic local Langlands correspondence for ๐บ๐๐๐๐ groups
- Rankin-Selberg Convolutions
- Local L-Functions for Split Spinor Groups
- Genericity of Representations of p-Adic Sp2n and Local Langlands Parameters
- Unipotent orbits and local L-functions
- Orbites unipotentes et pรดles d'ordre maximal de la fonction ฮผ de Harish-Chandra
- Square Integrable Representations and the Standard Module Conjecture for General Spin Groups
- Induced representations of reductive ${\germ p}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$
- On Certain L-Functions
- Induced representations of reductive ${\germ p}$-adic groups. I
- Construction of discrete series for classical ๐-adic groups
- DCOMPOSITION SPECTRALE ET REPRSENTATIONS SPCIALES DUN GROUPE RDUCTIF $p$-ADIQUE
- Paquets stables des s\'eries discr\`etes accessibles par endoscopie tordue; leur param\`etre de Langlands
- Correspondance de Langlands et Fonctions L des carres Exterieur et Symetrique
- Endoscopic Classification of representations of Quasi-Split Unitary Groups
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item