Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains
From MaRDI portal
Publication:585548
DOI10.1007/BF01457132zbMath0525.53062OpenAlexW1981842455MaRDI QIDQ585548
Publication date: 1983
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/163748
Global differential geometry of Hermitian and Kählerian manifolds (53C55) Pseudoconvex domains (32T99)
Related Items (5)
Kähler-Einstein metric on Reinhardt domains ⋮ The behaviour of solutions of the Gaussian curvature equation near an isolated boundary point ⋮ A boundary version of Ahlfors' lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps ⋮ Complete Metrics Conformal to the Hyperbolic Disc ⋮ On the Kähler-Einstein metric at strictly pseudoconvex points
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Function theory on manifolds which possess a pole
- An extension of E. Hopf's maximum principle with an application to Riemannian geometry
- Boundary behaviour of the complex Monge-Ampère equation
- Real hypersurfaces in complex manifolds
- Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains
- The Bergman kernel and biholomorphic mappings of pseudoconvex domains
- Automorphism of Tube Domains
- A General Schwarz Lemma for Kahler Manifolds
- La métrique de Kobayashi et la représentation des domaines sur la boule
- On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I
- On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of fefferman's equation
- Holomorphic mappings of complex manifolds
This page was built for publication: Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains