Self-interactions can stabilize excited boson stars
DOI10.1088/1361-6382/AC4B9BzbMath1486.85021arXiv2110.03000OpenAlexW4205505489MaRDI QIDQ5862881
Eugen Radu, Nicolas Sanchis-Gual, Carlos A. R. Herdeiro
Publication date: 10 March 2022
Published in: Classical and Quantum Gravity (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2110.03000
Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics (81Q05) Gravitational energy and conservation laws; groups of motions (83C40) Covariant wave equations in quantum theory, relativistic quantum mechanics (81R20) Galactic and stellar structure (85A15) Statistical thermodynamics (82B30) Propagation of singularities; initial value problems on manifolds (58J47) Bosonic systems in quantum theory (81V73) Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory (83-10)
Related Items (1)
Cites Work
- Formulations of the \(3+1\) evolution equations in curvilinear coordinates
- Multipolar boson stars: macroscopic Bose-Einstein condensates akin to hydrogen orbitals
- Asymptotically flat spinning scalar, Dirac and Proca stars
- Evolution of three-dimensional gravitational waves: Harmonic slicing case
- Numerical integration of Einstein’s field equations
- Partially Implicit Runge-Kutta Methods for Wave-Like Equations
- General relativistic boson stars
- Visual Quantum Mechanics
- The imitation game: Proca stars that can mimic the Schwarzschild shadow
- A stabilization mechanism for excited fermion–boson stars
- Dynamical boson stars
This page was built for publication: Self-interactions can stabilize excited boson stars