Surface Embedding of Non-Bipartite $k$-Extendable Graphs
From MaRDI portal
Publication:5865906
DOI10.4208/aam.OA-2021-0008zbMath1499.05169arXiv1501.05398MaRDI QIDQ5865906
Hongliang Lu, David G. L. Wang
Publication date: 10 June 2022
Published in: Annals of Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1501.05398
Planar graphs; geometric and topological aspects of graph theory (05C10) Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.) (05C70)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A polynomial algorithm for the extendability problem in bipartite graphs
- Surface embedding of \((n,k)\)-extendable graphs
- The matching extendability of surfaces
- Matching theory
- Matching extension and the genus of a graph
- On n-extendable graphs
- The Cartesian product of a \(k\)-extendable and an \(l\)-extendable graph is \((k+l+1)\)-extendable
- Extending matchings in graphs: A survey
- Connectivity of \(k\)-extendable graphs with large \(k\).
- On the matching extendability of graphs in surfaces
- Note on Hamilton Circuits
- Recent Progress in Matching Extension
- Graph Factors and Matching Extensions
- [https://portal.mardi4nfdi.de/wiki/Publication:4948507 A short proof of K�nig's matching theorem]
- SOLUTION OF THE HEAWOOD MAP-COLORING PROBLEM
- The Factorization of Linear Graphs
- Bestimmung der Maximalzahl der Nachbargebiete auf nicht-orientierbaren Flächen
This page was built for publication: Surface Embedding of Non-Bipartite $k$-Extendable Graphs