Fully S-coidempotent modules
From MaRDI portal
Publication:5867563
DOI10.1142/S0219498822502024zbMath1498.13020arXiv2008.05135OpenAlexW3168630284MaRDI QIDQ5867563
Faranak Farshadifar, Habibollah Ansari-Toroghy
Publication date: 14 September 2022
Published in: Journal of Algebra and Its Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2008.05135
multiplicatively closed subsetfully coidempotent modulecoidempotent submodule\(S\)-coidempotent submodulefully \(S\)-coidempotent module
Ideals and multiplicative ideal theory in commutative rings (13A15) Other special types of modules and ideals in commutative rings (13C13)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A note on \(S\)-Nakayama's lemma
- Fully idempotent and coidempotent modules
- The dual notion of multiplication modules.
- Modules Satisfying the S-Noetherian Property and S-ACCR
- On right S-Noetherian rings and S-Noetherian modules
- S-NOETHERIAN RINGS
- S-Artinian rings and finitely S-cogenerated rings
- On S-2-absorbing submodules and vn-regular modules
- $S$-2-absorbing submodules and $S$-2-absorbing second submodules
- On S-multiplication modules
- On S-prime submodules
- A generalization of pure submodules
- S-secondary submodules of a module
- Multiplication modules
This page was built for publication: Fully S-coidempotent modules