Schwarz–Christoffel accessory parameter for quadrilaterals via isomonodromy
From MaRDI portal
Publication:5870611
DOI10.1088/1751-8121/ab9f71OpenAlexW3037051767MaRDI QIDQ5870611
Rhodri B. Nelson, Bruno Carneiro Da Cunha, Tiago Anselmo, Darren G. Crowdy
Publication date: 23 January 2023
Published in: Journal of Physics A: Mathematical and Theoretical (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1088/1751-8121/ab9f71
Painlevé VI transcendentsisomonodromic tau-functionsSchwarz-Christoffel mapsconstructive conformal maps
Related Items (2)
Zeros of the isomonodromic tau functions in constructive conformal mapping of polycircular arc domains: the n-vertex case ⋮ Polycircular domains, numerical conformal mappings, and moduli of quadrilaterals
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Monodromy problem and the boundary condition for some Painlevé equations
- On the computation of modules of long quadrilaterals
- Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I: General theory and \(\tau \)-function
- Painlevé property of monodromy preserving deformation equations and the analyticity of \(\tau\) functions
- Studies of the Painlevé equations. I: Sixth Painlevé equation \(P_{VI}\)
- Monodromy dependence and connection formulae for isomonodromic tau functions
- Conformal field theory of Painlevé VI
- Erratum: ``Conformal field theory of Painlevé VI
- Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions
- How instanton combinatorics solves Painlevé VI, V and IIIs
- An Introduction to Fluid Dynamics
- Accessory parameters in conformal mapping: exploiting the isomonodromic tau function for Painlevé VI
- Solving Problems in Multiply Connected Domains
- Picard and Chazy solutions to the Painlevé VI equation
This page was built for publication: Schwarz–Christoffel accessory parameter for quadrilaterals via isomonodromy