Rigidity of Beltrami fields with a non-constant proportionality factor
From MaRDI portal
Publication:5884302
DOI10.1063/5.0087152OpenAlexW3191050321MaRDI QIDQ5884302
No author found.
Publication date: 20 March 2023
Published in: Journal of Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2108.03870
Vortex flows for incompressible inviscid fluids (76B47) Magnetohydrodynamics and electrohydrodynamics (76W05) Existence, uniqueness, and regularity theory for incompressible inviscid fluids (76B03) Euler equations (35Q31)
Cites Work
- Unnamed Item
- Beltrami fields with a nonconstant proportionality factor are rare
- Knots and links in steady solutions of the Euler equation
- Recent work on sharp estimates in second-order elliptic unique continuation problems
- Topological methods in hydrodynamics
- Elliptic partial differential equations of second order
- A steady Euler flow with compact support
- Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications
- Flexibility and rigidity in steady fluid motion
- Existence of vortex rings in Beltrami flows
- Beltrami fields with nonconstant proportionality factor
- Existence of knotted vortex tubes in steady Euler flows
- A Liouville theorem for the Euler equations in the plane
- Desingularization of vortex rings and shallow water vortices by a semilinear elliptic problem
- Liouville theorem for Beltrami flow
- Piecewise smooth stationary Euler flows with compact support via overdetermined boundary problems
- Vorticity and Incompressible Flow
- Shear Flows of an Ideal Fluid and Elliptic Equations in Unbounded Domains
- Homogeneous solutions to the 3D Euler system
- Remarks on a Liouville-Type Theorem for Beltrami Flows
- Vortex Rings with Swirl: Axisymmetric Solutions of the Euler Equations with Nonzero Helicity
- EXISTENCE AND ASYMPTOTIC BEHAVIOR IN PLANAR VORTEX THEORY
- Existence of three-dimensional toroidal MHD equilibria with nonconstant pressure
- Some mathematics for quasi-symmetry
- ON FORCE-FREE MAGNETIC FIELDS
- Ordered behaviour in force-free magnetic fields