Family of nonstandard integrable and superintegrable classical Hamiltonian systems in non-vanishing magnetic fields
From MaRDI portal
Publication:5887927
DOI10.1088/1751-8121/acc55aOpenAlexW4327702483MaRDI QIDQ5887927
Publication date: 21 April 2023
Published in: Journal of Physics A: Mathematical and Theoretical (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2212.05338
magnetic fieldintegrable systemintegrals of motionsuperintegrable systemCartesian and cylindtrical coordinates
Cites Work
- On integrable Hamiltonians with velocity-dependent potentials
- An infinite family of maximally superintegrable systems in a magnetic field with higher order integrals
- Classical superintegrable systems in a magnetic field that separate in Cartesian coordinates
- Quadratic algebra structure in the 5D Kepler system with non-central potentials and Yang-Coulomb monopole interaction
- New classes of quadratically integrable systems in magnetic fields: the generalized cylindrical and spherical cases
- Exact solvability of superintegrable systems
- Quadratic algebra for superintegrable monopole system in a Taub-NUT space
- Classical and quantum superintegrability with applications
- Integrable Hamiltonian systems with vector potentials
- Symmetries and degeneracies of a charged oscillator in the field of a magnetic monopole
- Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform
- Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory
- Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems
- Integrable and superintegrable systems with spin
- Quasiseparation of variables in the Schrödinger equation with a magnetic field
- Three-dimensional superintegrable systems in a static electromagnetic field
- Integrable Hamiltonian systems with velocity-dependent potentials
- Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
- Spherical type integrable classical systems in a magnetic field
- Integrable and superintegrable quantum systems in a magnetic field
- Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables
- Pairs of commuting quadratic elements in the universal enveloping algebra of Euclidean algebra and integrals of motion*
- On rotationally invariant integrable and superintegrable classical systems in magnetic fields with non-subgroup type integrals
- Cylindrical type integrable classical systems in a magnetic field
- Superintegrability of separable systems with magnetic field: the cylindrical case
This page was built for publication: Family of nonstandard integrable and superintegrable classical Hamiltonian systems in non-vanishing magnetic fields