A geometric generalization of Kaplansky’s direct finiteness conjecture
DOI10.1090/proc/16333OpenAlexW3211579232WikidataQ122938615 ScholiaQ122938615MaRDI QIDQ5889742
Publication date: 27 April 2023
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2111.07930
cellular automataalgebraic groupgroup ringalgebraic varietynear ringsofic groupstable finitenesssurjunctivitydirect finiteness
Group rings (16S34) Group rings of infinite groups and their modules (group-theoretic aspects) (20C07) Cellular automata (computational aspects) (68Q80) Symbolic dynamics (37B10) Varieties and morphisms (14A10) Schemes and morphisms (14A15)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Endomorphisms of symbolic algebraic varieties
- Sofic groups and direct finiteness.
- Stable finiteness of group rings in arbitrary characteristic
- Shadowing for families of endomorphisms of generalized group shifts
- On linear shifts of finite type and their endomorphisms
- On sofic groups, Kaplansky's conjectures, and endomorphisms of pro-algebraic groups
- Sofic mean length
- Linear cellular automata over modules of finite length and stable finiteness of group rings
- Injective linear cellular automata and sofic groups
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Première partie). Rédigé avec la colloboration de J. Dieudonné
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Troisième partie). Rédigé avec la colloboration de J. Dieudonné
- On dynamical finiteness properties of algebraic group shifts
- Algebraic Groups
- Cellular Automata and Groups
- FINITARY APPROXIMATIONS OF GROUPS AND THEIR APPLICATIONS
- On injective endomorphisms of symbolic schemes
This page was built for publication: A geometric generalization of Kaplansky’s direct finiteness conjecture