Deformations and derived categories.
From MaRDI portal
Publication:5896809
DOI10.5802/aif.2162zbMath1138.11020OpenAlexW2327177251MaRDI QIDQ5896809
Ted Chinburg, Frauke M. Bleher
Publication date: 24 March 2006
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2005__55_7_2285_0
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (6)
Finiteness theorems for deformations of complexes ⋮ Obstructions for deformations of complexes ⋮ Deformations of complexes for finite dimensional algebras ⋮ On a deformation theory of finite dimensional modules over repetitive algebras ⋮ Deformations and derived equivalences ⋮ The multiplicative constant for the Meijer-G kernel determinant
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Abelian defect group conjecture
- Applications of versal deformations to Galois theory.
- Universal deformation rings and cyclic blocks
- Modular elliptic curves and Fermat's Last Theorem
- Ring-theoretic properties of certain Hecke algebras
- Pseudocompact algebras, profinite groups and class formations
- Théoreme de Lefschetz et critères de dégénérescence de suites spectrales
- Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Havard 1963/64. Appendix: Cohomology with supports and the construction of the \(f^!\) functor by P. Deligne
- Complexe cotangent et déformations. II
- On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises
- Universal deformation rings and Klein four defect groups
- Representations related to CM elliptic curves
- Functors of Artin Rings
- Des catégories abéliennes
- Deformations and derived categories.
This page was built for publication: Deformations and derived categories.