Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

An invariance principle for dependent random variables

From MaRDI portal
Publication:5905104
Jump to:navigation, search

DOI10.1007/BF01025871zbMath0485.60032MaRDI QIDQ5905104

Magda Peligrad

Publication date: 1981

Published in: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete (Search for Journal in Brave)


zbMATH Keywords

invariance principlemixingdependent random variables


Mathematics Subject Classification ID

Generalizations of martingales (60G48) Functional limit theorems; invariance principles (60F17)


Related Items

Necessary and sufficient conditions for the conditional central limit theorem, Central limit theorem for stationary linear processes, Basic structure of the asymptotic theory in dynamic nonlinear econometric models, An invariance principle for dependent random variables, The invariance principle for ϕ-mixing sequences



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Another martingale convergence theorem
  • On the invariance principle for nonstationary mixingales
  • A generalization of martingales and two consequent convergence theorems
  • On mixing sequences of random variables
  • Limit Theorems and the Law of Large Numbers for Martingale-like Sequences
  • Invariance principles for dependent variables
  • Contributions to Central Limit Theory for Dependent Variables
  • An invariance principle for mixing sequences of random variables
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:5905104&oldid=17641548"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 6 February 2024, at 00:10.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki