Harnack inequality for harmonic functions relative to a nonlinear \(p\)-homogeneous Riemannian Dirichlet form
DOI10.1016/j.na.2005.06.007zbMath1084.31007OpenAlexW1977241748WikidataQ115343303 ScholiaQ115343303MaRDI QIDQ5921808
Publication date: 10 January 2006
Published in: Nonlinear Analysis. Theory, Methods \& Applications. Series A: Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.na.2005.06.007
Harnack inequalityDirichlet formnonlinear elliptic problemsnonlinear potential theoryDirichlet functional
Dirichlet forms (31C25) Nonlinear elliptic equations (35J60) Harmonic, subharmonic, superharmonic functions on other spaces (31C05) Other generalizations (nonlinear potential theory, etc.) (31C45)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Balls and metrics defined by vector fields. I: Basic properties
- Differentiability of Lipschitz functions on metric measure spaces
- Remarks on measure-valued Lagrangians on homogeneous spaces
- The Poincaré inequality for vector fields satisfying Hörmander's condition
- Sobolev inequalities on homogeneous spaces
- A Saint-Venant type principle for Dirichlet forms on discontinuous media
- Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- The local regularity of solutions of degenerate elliptic equations
- An embedding theorem and the harnack inequality for nonlinear subelliptic equations
This page was built for publication: Harnack inequality for harmonic functions relative to a nonlinear \(p\)-homogeneous Riemannian Dirichlet form