An algorithm for the Quillen-Suslin theorem for quotients of polnomial rings by monomial ideals
From MaRDI portal
Publication:5926299
DOI10.1006/jsco.2000.0367zbMath0984.13019OpenAlexW2086266104MaRDI QIDQ5926299
Reinhard C. Laubenbacher, Karen Schlauch
Publication date: 26 April 2002
Published in: Journal of Symbolic Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jsco.2000.0367
Software, source code, etc. for problems pertaining to commutative algebra (13-04) Projective and free modules and ideals in commutative rings (13C10) Polynomial rings and ideals; rings of integer-valued polynomials (13F20) Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes (13F55) Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) (13P10)
Related Items
An algorithm for unimodular completion over noetherian rings ⋮ Constructions in \(R[x_1,\dots ,x_n\): applications to K-theory]
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Algorithms for the Quillen-Suslin theorem
- An algorithm for the Quillen-Suslin theorem for monoid rings
- The Serre problem for discrete Hodge algebras
- Algorithmic aspects of Suslin's proof of Serre's conjecture
- The Quillen - Suslin theorem and the structure of n-dimensional elementary polynomial matrices
- Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen-Suslin) pour le Calcul Formel
- Combinatorics and commutative algebra