Asymptotic cones and quasi-isometry invariants for hyperbolic metric spaces
From MaRDI portal
Publication:5928020
DOI10.5802/aif.1816zbMath0992.20031arXivmath/0612256OpenAlexW2283575560MaRDI QIDQ5928020
Publication date: 20 March 2001
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0612256
isoperimetric inequalityasymptotic conesfilling invariantsfilling radiushyperbolic spacesquasi-isometry invariants
Asymptotic properties of groups (20F69) Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces (53C23)
Related Items
QUASI-ISOMETRY INVARIANTS AND ASYMPTOTIC CONES, Cheeger constants of surfaces and isoperimetric inequalities, Geometric compactification of moduli spaces of half-translation structures on surfaces, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, Asphericity and small cancellation theory for rotation families of groups., Knapsack problems in groups
Cites Work
- Gromov's theorem on groups of polynomial growth and elementary logic
- Groups of polynomial growth and expanding maps. Appendix by Jacques Tits
- Sur les groupes hyperboliques d'après Mikhael Gromov. (On the hyperbolic groups à la M. Gromov)
- Filling in lattices of \(\mathbb{Q}\)-rank 1 and in solvable groups
- On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality
- A short proof that a subquadratic isoperimetric inequality implies a linear one
- HYPERBOLICITY OF GROUPS WITH SUBQUADRATIC ISOPERIMETRIC INEQUALITY
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item