Class number relations from a computational point of view
From MaRDI portal
Publication:5928883
DOI10.1006/jsco.1999.1016zbMath0982.11073OpenAlexW2030007685MaRDI QIDQ5928883
Publication date: 27 March 2002
Published in: Journal of Symbolic Computation (Search for Journal in Brave)
Full work available at URL: https://semanticscholar.org/paper/8dba7e5c2e85f39b0e3f0a2bde3afc05eacf225f
algorithmarithmetically equivalent number fieldsbounds on class number quotientsclass number relationsGalois extensionMAGMA
Algebraic number theory computations (11Y40) Class numbers, class groups, discriminants (11R29) Algebraic number theory: global fields (11R99)
Related Items
Norm relations and computational problems in number fields ⋮ Arithmetically equivalent number fields have approximately the same successive minima
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Dixon's character table algorithm revisited
- Konstruktive Galoistheorie. (Constructive Galois theory)
- Fields with free multiplicative groups modulo torsion
- Über die Einheiten- und Divisorenklassengruppe von reellen Frobeniuskoerpern von Maximaltyp
- On the equation \(\zeta_K(s)=\zeta_{K'}(s)\)
- On the class numbers of arithmetically equivalent fields
- The Magma algebra system. I: The user language
- High speed computation of group characters
- Kuroda's class number relation
- Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahlkörper.
- Über die Klassenzahlen algebraischer Zahlkörper
- Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoisschen Körpers. Herrn Professor Dr. Erhard Schmidt in dankbarer Verehrung zum 75. Geburtstag