Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Polar invariants of plane curves and the Newton polygon

From MaRDI portal
Publication:5929135
Jump to:navigation, search

DOI10.2996/kmj/1138044260zbMath0984.32018OpenAlexW1975643387MaRDI QIDQ5929135

Andrzej Lenarcik, Arkasiusz Płoski

Publication date: 13 May 2002

Published in: Kodai Mathematical Journal (Search for Journal in Brave)

Full work available at URL: https://semanticscholar.org/paper/e02d1fe217ded3d2bce5c0319fa4493b8515d78a


zbMATH Keywords

Newton polygonsingularitypolar quotients


Mathematics Subject Classification ID

Milnor fibration; relations with knot theory (32S55)


Related Items (1)

On the Łojasiewicz numbers



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • On the singularities of polar curves
  • Estimation of Lojasiewicz exponents and Newton polygons
  • Variétés polaires. I: Invariants polaires des singularites d'hypersurfaces
  • Invariants polaires des courbes planes
  • On analytic function germs of two complex variables
  • Jacobian of meromorphic curves
  • Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of $C^2$
  • Lojasiewicz Type Inequalities and Newton Diagrams
  • Courbes polaires et topologie des courbes planes
  • Un théorème de décomposition pour les polaires génériques d'une courbe plane




This page was built for publication: Polar invariants of plane curves and the Newton polygon

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:5929135&oldid=12068668"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 00:27.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki