On the total degree of certain \(L\)-functions
From MaRDI portal
Publication:5929400
DOI10.1006/jnth.2000.2556zbMath1001.11051OpenAlexW2033899774MaRDI QIDQ5929400
Publication date: 17 December 2002
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jnth.2000.2556
exponential sumsfinite fieldbounds\(L\)-functionNewton polyhedronnumber of polesnumber of zerospolynomial in two variables
Other Dirichlet series and zeta functions (11M41) Exponential sums (11T23) Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Trigonometric and exponential sums (general theory) (11L03)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Newton polyhedra and the degree of the L-function associated to an exponential sum
- Milnor numbers and the topology of polynomial hypersurfaces
- Polyedres de Newton et nombres de Milnor
- Stratifications de Whitney et théorème de Bertini-Sard
- On exponential sums in finite fields. II
- \(L\)-functions associated to overconvergent \(F\)-isocrystals
- On the index theorem for \(p\)-adic differential equations. I
- Finiteness and cohomological purity in rigid cohomology (with an appendix by Aise Johan de Jong)
- Sur le theoreme de finitude de la cohomologie p -adique d'une variete affine non singuliere.