Bicovariant calculus in quantum theory and a generalization of the Gauss law.
From MaRDI portal
Publication:5930255
DOI10.1016/S0370-2693(00)00245-8zbMath1050.58500arXivhep-th/9912091MaRDI QIDQ5930255
No author found.
Publication date: 18 April 2001
Published in: Physics Letters. B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/hep-th/9912091
Quantum groups and related algebraic methods applied to problems in quantum theory (81R50) Yang-Mills and other gauge theories in quantum field theory (81T13) Noncommutative geometry methods in quantum field theory (81T75) Geometry of quantum groups (58B32)
Related Items (2)
TOWARDS A DEFINITION OF QUANTUM INTEGRABILITY ⋮ BASICS OF QUANTUM MECHANICS, GEOMETRIZATION AND SOME APPLICATIONS TO QUANTUM INFORMATION
Cites Work
- Unnamed Item
- Differential calculus on quantized simple Lie groups
- Bicovariant quantum algebras and quantum Lie algebras
- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="normal">S</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">U</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mn /><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo><mml:mn /></mml:math>lattice gauge theory
- AN INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRY ON QUANTUM GROUPS
This page was built for publication: Bicovariant calculus in quantum theory and a generalization of the Gauss law.