Generalizations of the Hill estimator -- asymptotic versus finite sample behaviour
From MaRDI portal
Publication:5931393
DOI10.1016/S0378-3758(00)00201-9zbMath0967.62035MaRDI QIDQ5931393
M. João Martins, M. Ivette Gomes
Publication date: 25 July 2001
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Asymptotic properties of nonparametric inference (62G20) Statistics of extreme values; tail inference (62G32)
Related Items
A class of asymptotically unbiased semi-parametric estimators of the tail index. ⋮ Heavy tail index estimation based on block order statistics ⋮ Bias reduction and explicit semi-parametric estimation of the tail index ⋮ A new partially reduced-bias mean-of-order \(p\) class of extreme value index estimators ⋮ Competitive estimation of the extreme value index ⋮ Location invariant heavy tail index estimation with block method ⋮ Semi-parametric tail inference through probability-weighted moments ⋮ Bias reduction in risk modelling: semi-parametric quantile estimation ⋮ Semi-parametric second-order reduced-bias high quantile estimation ⋮ Comparison of the several parameterized estimators for the positive extreme value index ⋮ Improved estimators of tail index and extreme quantiles under dependence serials ⋮ Functional kernel estimators of large conditional quantiles ⋮ Confidence regions for high quantiles of a heavy tailed distribution ⋮ Inference about the tail of a distribution: improvement on the Hill estimator ⋮ Semi-parametric estimation for heavy tailed distributions ⋮ Asymptotic normality of location invariant heavy tail index estimator ⋮ Limit laws for the norms of extremal samples ⋮ A review of more than one hundred Pareto-tail index estimators ⋮ Bias reduction of a tail index estimator through an external estimation of the second-order parameter ⋮ A class of new tail index estimators ⋮ Improved reduced-bias tail index and quantile estimators ⋮ Asymptotic comparison of the mixed moment and classical extreme value index estimators ⋮ Local-maximum-based tail index estimator ⋮ Extreme value index estimator using maximum likelihood and moment estimation ⋮ Reduced‐bias tail index estimation and the jackknife methodology ⋮ Tail exponent estimation via broadband log density-quantile regression ⋮ Generalized Kernel Estimators for the Weibull-Tail Coefficient ⋮ A simple generalisation of the Hill estimator ⋮ How Can Non-invariant Statistics Work in Our Benefit in the Semi-parametric Estimation of Parameters of Rare Events ⋮ Tail index estimation for heavy tails; accommodation of bias in the excesses over a high threshold ⋮ Reduced-Bias Tail Index Estimators Under a Third-Order Framework ⋮ Tail Index Estimation for Heavy-Tailed Models: Accommodation of Bias in Weighted Log-Excesses ⋮ The estimations under power normalization for the tail index, with comparison ⋮ Estimation of a scale second-order parameter related to the PORT methodology
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems
- A moment estimator for the index of an extreme-value distribution
- A simple general approach to inference about the tail of a distribution
- Optimal choice of sample fraction in extreme-value estimation
- Sur la distribution limite du terme maximum d'une série aléatoire
- Comparison of tail index estimators
- Some results on the behaviour of hill's estimator
- Using a bootstrap method to choose the sample fraction in tail index estimation
- A bootstrap-based method to achieve optimality in estimating the extreme-value index