Generalizations of the Hill estimator -- asymptotic versus finite sample behaviour

From MaRDI portal
Publication:5931393

DOI10.1016/S0378-3758(00)00201-9zbMath0967.62035MaRDI QIDQ5931393

M. João Martins, M. Ivette Gomes

Publication date: 25 July 2001

Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)




Related Items

A class of asymptotically unbiased semi-parametric estimators of the tail index.Heavy tail index estimation based on block order statisticsBias reduction and explicit semi-parametric estimation of the tail indexA new partially reduced-bias mean-of-order \(p\) class of extreme value index estimatorsCompetitive estimation of the extreme value indexLocation invariant heavy tail index estimation with block methodSemi-parametric tail inference through probability-weighted momentsBias reduction in risk modelling: semi-parametric quantile estimationSemi-parametric second-order reduced-bias high quantile estimationComparison of the several parameterized estimators for the positive extreme value indexImproved estimators of tail index and extreme quantiles under dependence serialsFunctional kernel estimators of large conditional quantilesConfidence regions for high quantiles of a heavy tailed distributionInference about the tail of a distribution: improvement on the Hill estimatorSemi-parametric estimation for heavy tailed distributionsAsymptotic normality of location invariant heavy tail index estimatorLimit laws for the norms of extremal samplesA review of more than one hundred Pareto-tail index estimatorsBias reduction of a tail index estimator through an external estimation of the second-order parameterA class of new tail index estimatorsImproved reduced-bias tail index and quantile estimatorsAsymptotic comparison of the mixed moment and classical extreme value index estimatorsLocal-maximum-based tail index estimatorExtreme value index estimator using maximum likelihood and moment estimationReduced‐bias tail index estimation and the jackknife methodologyTail exponent estimation via broadband log density-quantile regressionGeneralized Kernel Estimators for the Weibull-Tail CoefficientA simple generalisation of the Hill estimatorHow Can Non-invariant Statistics Work in Our Benefit in the Semi-parametric Estimation of Parameters of Rare EventsTail index estimation for heavy tails; accommodation of bias in the excesses over a high thresholdReduced-Bias Tail Index Estimators Under a Third-Order FrameworkTail Index Estimation for Heavy-Tailed Models: Accommodation of Bias in Weighted Log-ExcessesThe estimations under power normalization for the tail index, with comparisonEstimation of a scale second-order parameter related to the PORT methodology



Cites Work