On cubic spline approximations for the vortex patch problem
From MaRDI portal
Publication:5931561
DOI10.1016/S0168-9274(00)00014-3zbMath1013.76066OpenAlexW1976817283MaRDI QIDQ5931561
Tómas Chacón-Rebollo, Eliseo Chacón Vera
Publication date: 6 July 2003
Published in: Applied Numerical Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0168-9274(00)00014-3
convergence analysiscontour dynamics equationcurvature of contourglobal cubic spline interpolationKirchhoff ellipsesvortex patch problem
Related Items
On the choice of a method for integrating the equations of motion of a set of fluid particles, A spline collocation approach for a generalized wave equation subject to non-local conservation condition, On contour crossings in contour-advective simulations. I: Algorithm for detection and quantification, Planar inviscid flows in a channel of finite length: washout, trapping and self-oscillations of vorticity, Numerical study of an inviscid incompressible flow through a channel of finite length
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Regularization of contour dynamical algorithms. I. Tangential regularization
- On the accuracy of vortex methods
- Contour dynamics for the Euler equations: Curvature controlled initial node placement and accuracy
- Global regularity for vortex patches
- Application of Besov spaces to spline approximation
- Convergence of the point vortex method for the 2-D euler equations
- A lagrangian finite element method for the 2-D euler equations
- Vortex Methods. I: Convergence in Three Dimensions
- Vortex Methods. II: Higher Order Accuracy in Two and Three Dimensions
- Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires
- Convergence of the point vortex method for the 3‐D euler equations
- An Efficient Two-Dimensional Vortex Method with Long Time Accuracy
- Contour dynamics for the Euler equations in two dimensions