The Waring formula and fusion rings
DOI10.1016/S0393-0440(00)00048-6zbMath0982.05104OpenAlexW4229638935MaRDI QIDQ5932173
Publication date: 29 March 2002
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0393-0440(00)00048-6
Schur functionsChebyshev polynomialssymmetric functioncohomology ring of the GrassmannianFibonacci numbersfusion potentialsLucas numbersWaring formula
Symmetric functions and generalizations (05E05) Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Grassmannians, Schubert varieties, flag manifolds (14M15) Fibonacci and Lucas numbers and polynomials and generalizations (11B39)
Related Items (1)
Cites Work
- Linear recursive sequences
- Fusion rings and geometry
- TOPOLOGICAL LANDAU-GINZBURG MATTER FROM SP(N)K FUSION RINGS
- La théorie des classes de Chern
- su(n) and sp(2n) WZW fusion rules
- Intersection numbers on Grassmannians, and on the space of holomorphic maps from \(\mathbb{C} P^1\) into \(G_r(\mathbb{C}^n)\)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Waring formula and fusion rings