Fermionization of the spin-\(S\) Uimin-Lai-Sutherland model: generalisation of the supersymmetric \(t\)-\(J\) model to spin-\(S\)
DOI10.1016/S0550-3213(00)00757-4zbMath0974.82009arXivcond-mat/9909432OpenAlexW1536734379WikidataQ126759090 ScholiaQ126759090MaRDI QIDQ5933223
A. G. Sedrakyan, D. R. Karakhanyan, M. Mirumyan, J. A. Ambjørn
Publication date: 7 June 2001
Published in: Nuclear Physics. B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/cond-mat/9909432
Exactly solvable models; Bethe ansatz (82B23) Many-body theory; quantum Hall effect (81V70) Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics (82B20)
Related Items (10)
Cites Work
- Unnamed Item
- Algebraic solution of the Hubbard model on the infinite interval
- Fermionization and Hubbard models
- Solutions of the Yang-Baxter equation for isotropic quantum spin chains
- Fermionic representations of integrable lattice systems
- Bethe Ansatz and thermodynamic limit of affine quantum group invariant extensions of the t–J model
- Exact Integrability of the One-Dimensional Hubbard Model
This page was built for publication: Fermionization of the spin-\(S\) Uimin-Lai-Sutherland model: generalisation of the supersymmetric \(t\)-\(J\) model to spin-\(S\)