Resampling for checking linear regression models via non-parametric regression estimation
From MaRDI portal
Publication:5940725
DOI10.1016/S0167-9473(99)00117-6zbMath0967.62025OpenAlexW2003833444WikidataQ126803195 ScholiaQ126803195MaRDI QIDQ5940725
Juan M. Vilar Fernández, Wenceslao González Manteiga
Publication date: 20 August 2001
Published in: Computational Statistics and Data Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0167-9473(99)00117-6
Nonparametric regression and quantile regression (62G08) Time series, auto-correlation, regression, etc. in statistics (GARCH) (62M10) Nonparametric statistical resampling methods (62G09)
Related Items (5)
Bootstrap tests for nonparametric comparison of regression curves with dependent errors ⋮ An updated review of goodness-of-fit tests for regression models ⋮ Two tests for heterocedasticity in nonparametric regression ⋮ Nonparametric variance function estimation with missing data ⋮ An empirical study of a test for polynomial relationships in randomly right censored regression models
Cites Work
- Unnamed Item
- Unnamed Item
- Smoothing by weighted averaging of rounded points
- Comparison of two bandwidth selectors with dependent errors
- Testing goodness-of-fit in regression via order selection criteria
- Comparing nonparametric versus parametric regression fits
- Testing the hypothesis of a general linear model using nonparametric regression estimation
- Testing linear regression models using non-parametric regression estimators when errors are non-independent
- NN goodness-of-fit tests for linear models
- Bootstrap simultaneous error bars for nonparametric regression
- A nonparametric test of fit of a parametric model
- Bootstrap test of goodness of fit to a linear model when errors are correlated
- Algorithm AS 222: Resistant Smoothing Using the Fast Fourier Transform
- Testing goodness of fit via nonparametric function estimation techniques
This page was built for publication: Resampling for checking linear regression models via non-parametric regression estimation