The Chowla-Selberg formula
DOI10.1016/0022-314X(83)90022-7zbMath0525.12012OpenAlexW2012496899MaRDI QIDQ594137
Publication date: 1983
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-314x(83)90022-7
Dedekind zeta functionCM-fieldsBarnes multiple gamma functionChowla-Selberg formulaEpstein zeta function over algebraic number fieldHecke L-functionKronecker limit formulaTaylor expansion of zeta function
Analytic theory (Epstein zeta functions; relations with automorphic forms and functions) (11E45) Zeta functions and (L)-functions of number fields (11R42) Automorphic forms on (mbox{GL}(2)); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces (11F41) Hurwitz and Lerch zeta functions (11M35) Totally real fields (11R80)
Related Items (4)
Cites Work
- On the periods of Abelian integrals and a formula of Chowla and Selberg. With an appendix by David E. Rohrlich
- Values of abelian \(L\)-functions at negative integers over totally real fields
- Automorphic forms and the periods of abelian varieties
- Gauss sums and the p-adic \(\Gamma\)-function
- A Kronecker limit formula for real quadratic fields
- On Kronecker's limit formula in a totally imaginary quadratic field over a totally real algebraic number field
- On a function analogous to log η(τ)
- Sur les Périodes des Intégrales Abéliennes
- On Epstein's Zeta-function.
- On a Certain Function Analogous to log|η(z)|
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Chowla-Selberg formula