A stable range for dimensions of homogeneous \(O(n)\)-invariant polynomials on the \(n\times n\) matrices
DOI10.1006/jabr.2001.8828zbMath1008.16024OpenAlexW2034402566MaRDI QIDQ5945131
Publication date: 3 November 2002
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jabr.2001.8828
Hilbert seriesSchur-Weyl dualitytracesLittlewood-Richardson coefficientsorthogonal invariantssymmetric pairs
Representations of finite symmetric groups (20C30) Representation theory for linear algebraic groups (20G05) Vector and tensor algebra, theory of invariants (15A72) Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series (13D40) Actions of groups on commutative rings; invariant theory (13A50) Trace rings and invariant theory (associative rings and algebras) (16R30)
Related Items (2)
Uses Software
Cites Work
This page was built for publication: A stable range for dimensions of homogeneous \(O(n)\)-invariant polynomials on the \(n\times n\) matrices