A PT-symmetric QES partner to the Khare-Mandal potential with real eigenvalues
From MaRDI portal
Publication:5945427
DOI10.1016/S0375-9601(01)00578-3zbMath0972.81026arXivquant-ph/0107095MaRDI QIDQ5945427
No author found.
Publication date: 10 October 2001
Published in: Physics Letters. A (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/quant-ph/0107095
Related Items
A Unifying E2-Quasi Exactly Solvable Model, Dirichlet spectra of the paradigm model of complex PT-symmetric potential: \(V(x)=-(ix)^N\), First-order intertwining operators with position dependent mass and \(\eta\)-weak-pseudo-hermiticity generators, \((1+1)\)-Dirac particle with position-dependent mass in complexified Lorentz scalar interactions: Effectively \(\mathcal{PT}\)-symmetric, A new non-Hermitian \(E_2\)-quasi-exactly solvable model, \(\eta \)-weak-pseudo-hermiticity generators and radially symmetric Hamiltonians, Spherical-separability of non-Hermitian Hamiltonians and pseudo-\(\mathcal{PT}\)-symmetry, Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework
Cites Work
- Unnamed Item
- A PT-invariant potential with complex QES eigenvalues
- PT-symmetric sextic potentials
- \(\text{sl}(2, \mathbb C)\) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues
- \(\mathcal P\mathcal T\)-symmetric harmonic oscillators
- Algebraic and scattering aspects of a 𝒫𝒯-symmetric solvable potential
- Supersymmetry and the spontaneous breakdown of 𝒫𝒯 symmetry
- Quasi-exactly solvable quartic potential
- Real Spectra in Non-Hermitian Hamiltonians Having<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-script">P</mml:mi><mml:mi mathvariant="bold-script">T</mml:mi></mml:math>Symmetry
- A newPT-symmetric complex Hamiltonian with a real spectrum
- Shape invariant potentials withcalPcalTsymmetry
- A new class of PT-symmetric Hamiltonians with real spectra
- Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential