A new characterization of Dirichlet type spaces on the unit ball of \(\mathbb{C}^n\)
From MaRDI portal
Publication:5945938
DOI10.1006/jmaa.2000.7414zbMath1011.46021OpenAlexW1976702130MaRDI QIDQ5945938
Publication date: 1 June 2003
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jmaa.2000.7414
Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) (46E22) Hilbert spaces of continuous, differentiable or analytic functions (46E20) Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA)) (32A37)
Related Items
Spaces \(M(\mathcal D_p),\mathcal B_n^p\) and \(\mathcal Q_p\), Small Hankel operators on the Dirichlet-type spaces on the unit ball of \(\mathbb C^n\), Some new characterizations of Dirichlet type spaces on the unit ball of \(\mathbb C^{n}\), Unnamed Item, Oscillation of holomorphic Bergman-Besov kernels on the ball, Weighted Bergman-Dirichlet and Bargmann-Dirichlet spaces in high dimension, Higher order derivatives and derivative-free characterizations of \(F(p, q, s)\), A new formalization of Dirichlet-type spaces, Characterizations of \(Q_p\) spaces in the unit ball of \(\mathbb C^n\)
Cites Work
- A new characterization of Dirichlet type spaces and applications
- Random Dirichlet type functions on the unit ball of \(\mathbb{C}^n\)
- Hankel Operators on Weighted Bergman Spaces
- Möbius invariant besov p-spaces and hankel operators in the bergman space on the ball in C n
- Compact Toeplitz operators on Bergman spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item