An application of Gesztesy-Simon-Teschl oscillation theory to a problem in differential geometry
From MaRDI portal
Publication:5946930
DOI10.1006/jmaa.2001.7471zbMath0997.53005OpenAlexW2082487566WikidataQ115395361 ScholiaQ115395361MaRDI QIDQ5946930
Publication date: 8 November 2002
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jmaa.2001.7471
Minimal surfaces in differential geometry, surfaces with prescribed mean curvature (53A10) Sturm-Liouville theory (34B24) Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators (34L15)
Related Items (2)
Principal Solutions Revisited ⋮ Relative oscillation theory, weighted zeros of the Wronskian, and the spectral shift function
Cites Work
- Index, vision number and stability of complete minimal surfaces
- On complete minimal surfaces with finite Morse index in three manifolds
- Eigenvalue estimates with applications to minimal surfaces
- Spectral theory of ordinary differential operators
- An index characterization of the catenoid and index bounds for minimal surfaces in \(R^ 4\)
- Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung
- A New Characterization of the Friedrichs Extension of Semibounded Sturm-Liouville Operators
- Zeros of the Wronskian and Renormalized Oscillation Theory
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: An application of Gesztesy-Simon-Teschl oscillation theory to a problem in differential geometry