Triple smoothing estimation of the regression function and its derivatives in nonparametric regression
From MaRDI portal
Publication:5950628
DOI10.1016/S0378-3758(00)00319-0zbMath1026.62039OpenAlexW2017541689MaRDI QIDQ5950628
No author found.
Publication date: 2 January 2002
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0378-3758(00)00319-0
boundary effectderivative estimationlocal polynomial estimationaverage shifting techniquefinite sample propertytriple smoothing estimation
Nonparametric regression and quantile regression (62G08) Asymptotic properties of nonparametric inference (62G20)
Related Items
Local polynomial \(M\)-smoothers in nonparametric regression, Empirical likelihood based inference for the derivative of the nonparametric regression function
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Smoothing by weighted averaging of rounded points
- Bandwidth choice for nonparametric regression
- Optimal bandwidth selection in nonparametric regression function estimation
- Convolution type estimators for nonparametric regression
- Nonparametric regression analysis of longitudinal data
- Smoothing techniques. With implementation in S
- Variable bandwidth and local linear regression smoothers
- On the role of the shrinkage parameter in local linear smoothing
- Choosing a kernel regression estimator. With comments and a rejoinder by the authors
- Multivariate locally weighted least squares regression
- Smoothing methods in statistics
- Local linear regression smoothers and their minimax efficiencies
- Smooth estimators of distribution and density functions
- Finite-Sample Variance of Local Polynomials: Analysis and Solutions
- The choice of weights in kernel regression estimation
- Double smoothing for kernelestimators in nonparametric regression
- Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting
- How Far Are Automatically Chosen Regression Smoothing Parameters From Their Optimum?
- Robust Locally Weighted Regression and Smoothing Scatterplots
- Design-adaptive Nonparametric Regression
- Empirical-Bias Bandwidths for Local Polynomial Nonparametric Regression and Density Estimation
- Nonparametric regression estimates using misclassified binary responses
- Asymptotic properties of locally weighted regression ruey-ching hwang