The homogeneous balance method, Lax pair, Hirota transformation and a general fifth-order KdV equation
DOI10.1016/S0960-0779(00)00274-5zbMath1028.35132arXivnlin/0108026WikidataQ127394955 ScholiaQ127394955MaRDI QIDQ5950953
Ying-Hai Wang, Fajiang Zhang, Lei Yang
Publication date: 2 January 2002
Published in: Chaos, Solitons and Fractals (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/nlin/0108026
solitary wave solutionSawada-Kotera equationauto-Bäcklund transformationgeneral fKdV equationhigher-order KdV equationHirota transformationLax representsLax's equation
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) KdV equations (Korteweg-de Vries equations) (35Q53) Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems (37K35)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Multiple soliton-like solutions for \((2+1)\)-dimensional dispersive long-wave equations
- An exact solution to the Kuramoto-Sivashinsky equation
- Two new applications of the homogeneous balance method
- Exact solutions of nonlinear equations
- Exact solutions for a compound KdV-Burgers equation
- A note on the homogeneous balance method
- A Method for Finding N-Soliton Solutions of the K.d.V. Equation and K.d.V.-Like Equation
- An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders
- Factorization of operators I. Miura transformations
- Factorization of operators.II
- A new hierarchy of Korteweg–de Vries equations
- Soliton solutions and the higher order Korteweg–de Vries equations