A symmetry property of Solomon's algebra and of higher Lie characters
From MaRDI portal
Publication:5956167
DOI10.1007/BF02941465zbMath0996.05118WikidataQ115391057 ScholiaQ115391057MaRDI QIDQ5956167
Armin Jöllenbeck, Christophe Reutenauer
Publication date: 3 July 2002
Published in: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (Search for Journal in Brave)
Coxeter groupnumber of permutationsalgebra of symmetric functionscharacter tableLie charactersplethystic methodsSolomon descent algebraSolomon mapping
Combinatorial aspects of representation theory (05E10) Representations of finite symmetric groups (20C30) Universal enveloping (super)algebras (17B35) Identities, free Lie (super)algebras (17B01)
Related Items
The module structure of the Solomon-Tits algebra of the symmetric group., Embeddings of higher Lie modules., A symmetry of the descent algebra of a finite Coxeter group., The peak algebra of the symmetric group revisited., A Solomon descent theory for the wreath products $G\wr\mathfrak S_n$, A generating set of Solomon's descent algebra
Cites Work
- A Mackey formula in the group of a Coxeter group. With an appendix by J. Tits: Two properties of Coxeter complexes
- Counting permutations with given cycle structure and descent set
- A Hopf-algebra approach to inner plethysm
- Cycle type and descent set in wreath products
- On the descending Loewy series of Solomon's descent algebra
- Higher Lie idempotents
- Noncommutative Symmetric Functions II: Transformations of Alphabets
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item