Enumeration of permutations by descents, idescents, imajor index, and basic components
From MaRDI portal
Publication:595655
DOI10.1016/0097-3165(84)90074-8zbMath0527.05005OpenAlexW2034888843MaRDI QIDQ595655
Publication date: 1984
Published in: Journal of Combinatorial Theory. Series A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0097-3165(84)90074-8
permutation cycle structurederangement problemenumeration of involutionsfour-variate generating functiongeneralized Worpitzky identityidescent numberimajor indexNewcomb problemq-Eulerian numbersq-Stirling numbers of the first kind
Related Items (9)
Statistics on wreath products and generalized binomial-Stirling numbers ⋮ Some stochastic processes in a random permutation ⋮ Eulerian quasisymmetric functions ⋮ Permutation statistics and linear extensions of posets ⋮ A binary tree decomposition space of permutation statistics ⋮ A central limit theorem for a new statistic on permutations ⋮ Вычисление распределения одной комбинаторной статистики, заданной на последовательностях с фиксированным составом знаков ⋮ Multicolored permutations, sequences, and tableaux ⋮ 𝑞-Eulerian polynomials: Excedance number and major index
Cites Work
- Unnamed Item
- Unnamed Item
- Permutation statistics and partitions
- A combinatorial interpretation of q-derangement and q-Laguerre numbers
- Generalized Worpitzky identities with applications to permutation enumeration
- A \(q\)-analog of the exponential formula
- A simple solution of Simon Newcomb's problem
- Binomial posets, Möbius inversion, and permutation enumeration
- The q-Stirling numbers of first and second kinds
- The (qr)-Simon Newcomb problem
- On the Netto Inversion Number of a Sequence
- On the Foundations of Combinatorial Theory V, Eulerian Differential Operators
- Enumeration of permutations by rises and cycle structure.
This page was built for publication: Enumeration of permutations by descents, idescents, imajor index, and basic components