Reconstruction of a radially symmetric potential from two spectral sequences
DOI10.1006/jmaa.2001.7664zbMath1011.35129OpenAlexW2014112043MaRDI QIDQ5957156
Paul E. Sacks, William Rundell
Publication date: 17 September 2002
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jmaa.2001.7664
linearized probleminverse eigenvalue problemcompleteness of families of functions in closed subspaces of \(L^2(0,1)\)reconstruction of radial potentials in 3D-Schrödinger equations
General topics in linear spectral theory for PDEs (35P05) Inverse problems for PDEs (35R30) Boundary value and inverse problems for harmonic functions in higher dimensions (31B20)
Related Items (25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An \(n\)-dimensional Borg-Levinson theorem
- Computing eigenvalues of singular Sturm-Liouville problems
- Inverse spectral theory for a singular Sturm-Liouville operator on \([0,1\)]
- Spectral rigidity for radial Schrödinger operators
- A Borg-Levinson theorem for Bessel operators
- Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte
- Reconstruction Techniques for Classical Inverse Sturm-Liouville Problems
- The Recovery of Potentials from Finite Spectral Data
- An introduction to the mathematical theory of inverse problems
This page was built for publication: Reconstruction of a radially symmetric potential from two spectral sequences