Hilbert's theorem 90 for \(K^ 2\), with application to the Chow groups of rational surfaces
From MaRDI portal
Publication:595717
DOI10.1007/BF01393336zbMath0527.14011OpenAlexW2314530875MaRDI QIDQ595717
Publication date: 1983
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/142982
good reductionrational pointrational surfaceChow groupsvanishing theoremrational equivalencefiniteness theoremsgeometrically integral varietygroup of zero-dimensional cyclesK-theoretic methods
Rational points (14G05) Rational and unirational varieties (14M20) Parametrization (Chow and Hilbert schemes) (14C05) Algebraic cycles (14C25) Special surfaces (14J25) (Equivariant) Chow groups and rings; motives (14C15) Applications of methods of algebraic (K)-theory in algebraic geometry (14C35)
Related Items
Levels of function fields of surfaces over number fields, Galois descent and \(K_ 2\) of number fields, Concerning a conjecture of Colliot-Thélène and Sansuc, On the K-theory of curves over finite fields, Rost nilpotence and étale motivic cohomology, 𝑅-equivalence on low degree complete intersections, La descente sur les variétés rationnelles. II. (The descent on rational varieties. II), The arithmetic of the Chow group of zero-cycles, Del Pezzo surfaces of degree four, Evaluating Azumaya algebras on cubic surfaces, On the integral Tate conjecture for the product of a curve and a \(CH_0\)-trivial surface over a finite field, Brauer-Manin obstruction for zero-cycles on certain varieties, Unramified cohomology and the entire Hodge conjecture, Application d'Abel-Jacobi p-adique et cycles algébriques. (p-adic Abel- Jacobi map and algebraic cycles), On the number of Mordell-Weil generators for cubic surfaces, On \(K_1\) of curves over global fields. Appendix by C. Weibel, Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: Un théorème de finitude pour la torsion. (The codimension two Chow group of varieties defined over a number field: A finiteness theorem for the torsion), Non rationalité stable sur les corps quelconques, On the cycle map for torsion algebraic cycles of codimension two, The arithmetic of zero cycles on surfaces with geometric genus and irregularity zero, A construction of rational elliptic surfaces with the non-surjective boundary map on \(K_{2}\), Class field theory for a product of curves over a local field, Rational equivalence on cubic hypersurfaces of bad reduction, Lines on cubic hypersurfaces, Cycles de codimension 2 etH3non ramifié pour les variétés sur les corps finis, Cohomology and torsion cycles over the maximal cyclotomic extension, Specialization of zero cycles, A finiteness theorem for the Chow group of zero-cycles of a linear algebraic group on a \(p\)-adic field, The Rost nilpotence theorem for geometrically rational surfaces, Torsors under tori and Néron models, Permutation modules and Chow motives of geometrically rational surfaces, Sur la cohomologie non ramifiée en degré trois d'un produit, The arithmetic of rational varieties, MILNOR K-GROUP ATTACHED TO A TORUS AND BIRCH–TATE CONJECTURE, The Brauer–Manin pairing, class field theory, and motivic homology, Elliptic curves and logarithmic derivatives, \(K_2\)-cohomology and the second Chow group, Zero-cycles on diagonal cubic surfaces over \(p\)-adic fields, Algebraic \(K\)-theory and the norm residue homomorphism, Real components of algebraic varieties and étale cohomology, Torsion dans le groupe de Chow de codimension deux, Norm principle for even \(K\)-groups of number fields, Hasse's norm theorem for \(K_ 2\), Motifs, L-functions, and the K-cohomology of rational surfaces over finite fields, Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Zero cycles on del Pezzo surfaces over local fields
Cites Work
- Quelques gammes sur les formes quadratiques
- Some formulas pertaining to the K-theory of commutative groupschemes
- On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch
- On the Chow groups of certain rational surfaces
- Torsion algebraic cycles, 𝐾₂, and Brauer groups of function fields
- Introduction to Algebraic K-Theory. (AM-72)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item