\(C\)-epic compactifications
DOI10.1016/S0166-8641(00)00119-XzbMath0993.54024OpenAlexW2074612114MaRDI QIDQ5957288
Anthony W. Hager, Jorge Martinez
Publication date: 24 July 2002
Published in: Topology and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0166-8641(00)00119-x
Banach algebras of continuous functions, function algebras (46J10) Extensions of spaces (compactifications, supercompactifications, completions, etc.) (54D35) (C)- and (C^*)-embedding (54C45) Epimorphisms, monomorphisms, special classes of morphisms, null morphisms (18A20) Real-valued functions in general topology (54C30) Ordered topological linear spaces, vector lattices (46A40) Extremally disconnected spaces, (F)-spaces, etc. (54G05) Ordered abelian groups, Riesz groups, ordered linear spaces (06F20)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the localic Yosida representation of an archimedean lattice ordered group with weak order unit
- Epicomplete l-groups
- Groupes et anneaux reticules
- The relative uniform density of the continuous functions in the Baire functions, and of a divisible Archimedean \(\ell\)-group in any epicompletion
- A uniform view of localic realcompactness
- \(\varepsilon\)-spaces
- Extensions of zero-sets and of real-valued functions
- Epicomplete archimedean l-groups via a localic Yosida theorem
- \(\kappa\)-frames
- Epicomplete Archimedean l-Groups and Vector Lattices
- Characterization of the σ-cover of a compact
- Lindelöf locales and realcompactness
- Quasi F-Covers of Tychonoff Spaces
- Order-Cauchy Completions of Rings and Vector Lattices of Continuous Functions
- Frames Associated with an Abelian l-Group
- The Additive Group of an f-ring
- On the Embedding into a Ring of an Archimedean ι-Group
- Fraction-Dense Algebras and Spaces
- A Note on Certain Subalgebras of C()
- On Inverse-Closed Subalgebras of C (X )†
- Atomless Parts of Spaces.
- The smallest basically disconnected preimage of a space
- Cozero bases of frames
- Realcompactness and the cozero part of a frame