Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

\(\mathcal U_q(\operatorname{sl}(2))\) satisfies a Bernstein duality

From MaRDI portal
Publication:5960300
Jump to:navigation, search

DOI10.1006/jsco.2001.0490zbMath1017.17014OpenAlexW2008671907MaRDI QIDQ5960300

Jorge Jódar, Pascual Jara

Publication date: 15 April 2002

Published in: Journal of Symbolic Computation (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1006/jsco.2001.0490


zbMATH Keywords

Gröbner basisquantum groupenveloping algebramodule categoryfinite-dimensional irreducible representations


Mathematics Subject Classification ID

Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Quantum groups (quantized enveloping algebras) and related deformations (17B37) Universal enveloping (super)algebras (17B35)




Cites Work

  • Sur la résolution injective minimale de l'algèbre enveloppante d'une algèbre de Lie résoluble. (On the minimal injective resolution of the enveloping algebra of a solvable Lie algebra)
  • An example of Bernstein duality
  • Zariskian filtrations
  • The quantum coordinate ring of the special linear group
  • Prime ideals in finite extensions of Noetherian rings
  • Locally finite representations of algebras∗
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item




This page was built for publication: \(\mathcal U_q(\operatorname{sl}(2))\) satisfies a Bernstein duality

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:5960300&oldid=12131407"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 01:26.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki