On the \(\mathbb Z_l\)-rank of Abelian extensions with restricted ramification
From MaRDI portal
Publication:5960994
DOI10.1006/jnth.2001.2712zbMath1026.11084OpenAlexW1984570699MaRDI QIDQ5960994
Publication date: 22 April 2002
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jnth.2001.2712
Related Items
On the cohomological dimension of pro-\(p\)-extensions of number fields, On Greenberg's generalized conjecture for CM-fields, On multiple \(\mathbb Z_p\)-extensions of imaginary abelian quartic fields, The finitude of tamely ramified pro-\(p\) extensions of number fields with cyclic \(p\)-class groups, On Greenbergâs generalized conjecture for complex cubic fields, Iwasawa theory for extensions with restricted \(p\)-ramification, Automorphy lifting for residually reducible -adic Galois representations, II, Symmetric power functoriality for holomorphic modular forms, Automorphy lifting for residually reducible đ-adic Galois representations, Unramified subextensions of ray class towers
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sur l'indépendance \(\ell\)-adique de nombres algébriques. (On \(\ell\)- adic independence of algebraic numbers)
- On \(\mathbb{Z}_ p\)-torsion of some Galois modules
- Transcendance et exponentielles en plusieurs variables
- Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés
- Reflexion theorems
- Galois Cohomology
- Pro-\(\ell\)-extensions of \(\mathfrak l\)-rational number fields
- 2-birational quadratic extensions of totally real fields
- Algebraic number fields with the discriminant equal to that of a quadratic number field
- On the units of algebraic number fields
- Extensions with given points of ramification