Hasse principles for higher-dimensional fields
From MaRDI portal
Publication:5962624
DOI10.4007/annals.2016.183.1.1zbMath1346.14057arXiv0910.2803OpenAlexW2963509027MaRDI QIDQ5962624
Publication date: 15 February 2016
Published in: Annals of Mathematics. Second Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0910.2803
Rational points (14G05) Étale and other Grothendieck topologies and (co)homologies (14F20) Galois cohomology (11R34)
Related Items (12)
Duality via cycle complexes ⋮ Motivic homology and class field theory over \(p\)-adic fields ⋮ Bounding the Pythagoras number of a field by \(2^n +1\) ⋮ A local to global principle for higher zero-cycles ⋮ Linear algebraic groups with good reduction ⋮ Some Aspects of the Algebraic Theory of Quadratic Forms ⋮ Weights in arithmetic geometry ⋮ Motivic cohomology: applications and conjectures ⋮ Hasse principles for higher-dimensional fields ⋮ Sums of squares in function fields over Henselian local fields ⋮ Vanishing theorems and Brauer–Hasse–Noether exact sequences for the cohomology of higher-dimensional fields ⋮ Spinor groups with good reduction
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Motivic Eilenberg-MacLane spaces
- On motivic cohomology with \(\mathbb{Z}/l\)-coefficients
- Cohomological Hasse principle and motivic cohomology for arithmetic schemes
- Application d'Abel-Jacobi p-adique et cycles algébriques. (p-adic Abel- Jacobi map and algebraic cycles)
- Weights in arithmetic geometry
- Algebraic \(K\)-theory and motivic cohomology. Abstracts from the workshop held June 28th -- July 4th, 2009.
- Torsion dans le groupe de Chow de codimension deux
- \(p\)-adic étale cohomology
- K-theory and intersection theory revisited
- La conjecture de Weil. II
- Mixed motives and algebraic K-theory. (Almost unchanged version of the author's habilitation at Univ. Regensburg 1988)
- Kato homology of arithmetic schemes and higher class field theory over local fields
- On the Milnor conjectures: history, influence, applications.
- La conjecture de Weil. I
- Motivic cohomology with \(\mathbb Z/2\)-coefficients
- A note on Gersten's conjecture for logarithmic Hodge-Witt sheaves
- Some consequences of the Riemann hypothesis for varieties over finite fields
- Étale duality for constructible sheaves on arithmetic schemes
- Norm varieties
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Rational points in Henselian discrete valuation rings
- Algebraic \(K\)-theory and quadratic forms. With an appendix by J. Tate
- Seminar of algebraic geometry du Bois-Marie 1963--1964. Topos theory and étale cohomology of schemes (SGA 4). Vol. 2: Exp. V--VIII
- Resolution of singularities of an algebraic variety over a field of characteristic zero. I
- $ K$-COHOMOLOGY OF SEVERI-BRAUER VARIETIES AND THE NORM RESIDUE HOMOMORPHISM
- ℋ — Cohomologies Versus Algebraic Cycles
- Norm Varieties and the Chain Lemma (After Markus Rost)
- A Hasse principle for two dimensional global fields.
- Sur la partie p-primaire du groupe de chow de codimension deux
- Values of Zeta Functions of Varieties Over Finite Fields
- Complexe de de\thinspace Rham-Witt et cohomologie cristalline
- Gersten's conjecture and the homology of schemes
- Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique
- Descent, motives and K-theory.
- Hasse principles for higher-dimensional fields
This page was built for publication: Hasse principles for higher-dimensional fields