Upper bounds for the Euclidean minima of abelian fields
From MaRDI portal
Publication:5963340
DOI10.5802/jtnb.919zbMath1398.11132arXiv1311.5163OpenAlexW2593386873MaRDI QIDQ5963340
Eva Bayer-Fluckiger, Piotr Maciak
Publication date: 19 February 2016
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1311.5163
abelian extensionscyclotomic fieldsideal latticesEuclidean minimaEuclidean ringsMinkowski's conjecture
Research exposition (monographs, survey articles) pertaining to number theory (11-02) Cyclotomic extensions (11R18) Algebraic numbers; rings of algebraic integers (11R04)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor
- On the Euclidean minimum of some real number fields
- Upper bounds for Euclidean minima of algebraic number fields
- On conjectures of Minkowski and Woods for \(n=7\)
- The Euclidean algorithm in algebraic number fields
- Ideal lattices over totally real number fields and Euclidean minima
- On conjectures of Minkowski and Woods for n=8
- Euclidean minima of totally real number fields: Algorithmic determination
- Minkowski’s conjecture, well-rounded lattices and topological dimension
This page was built for publication: Upper bounds for the Euclidean minima of abelian fields